
An Introduction to SESAME:
A New Neutron Scattering Technique for Studying 

the Structure of Soft Matter

Roger Pynn
Indiana University and the Spallation Neutron Source

This work was funded by DOE’s Office of Basic Energy Sciences



The Reason for the Experimental Difficulty:
The Resolution / Intensity Conundrum

• Neutron scattering uses Bragg’s law to measure a 
distance d within the sample

• For soft matter, d >> λ so θ is small. 

• To define θ with sufficient precision, the trajectories 
of both the incident & scattered beams are defined in 
traditional methods such as SANS

• But the measured intensity scales as ~ φ (δθ)2 V, so 
there is a conflict between high intensity and good 
resolution (i.e. small δθ)

– SANS instruments are long so that V can be large while δθ is small 

2θ

θλ sin2d=

We’d like to be able to measure 2θ accurately without
having to collimate the beam or use a small sample 



Calcite Prism Demonstration
• Two birefringent prisms produce parallel and separated 

ordinary and extraordinary rays
• With a 45° polarizer inserted, the O and E rays have a well 

defined phase separation
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We Can do the Same Thing with Neutrons

• Birefringent prisms for neutrons are simply appropriately shaped 
magnetic-field regions
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Using Snell’s law we can show that 
dΨ/dφ = (2π/λ) Z for light or neutrons. 
Z depends on geometry & materials.
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Wollaston Prism: Invented Early 19th Century

• For light: the refractive effect can be 
doubled by using a pair of prisms with 
perpendicular optic axes

• For neutrons: the refractive effect can 
be doubled by using a pair of triangular 
solenoids with opposite magnetic fields

http://upload.wikimedia.org/wikipedia/commons/d/d6/Wollaston-prism.png�


Spin Echo Scattering Angle Measurement (SESAME)

• Neutron spin states are split and recombined by magnetic Wollaston prisms

• With no sample, the Larmor phase Ψ generated before sample is cancelled 
after the sample, independent of neutron incident angle, φ (this effect is 
called neutron spin echo)

• If scattering occurs, the phases generated before and after the sample are 
different (because φ is different) and the final neutron polarization is reduced 
because P ~ cos(Ψ)

• The neutron depolarization is weakly dependent on the incident value of φ so 
we don’t need to collimate the beam
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SESANS & SERGIS

• The SESAME method can be applied in two ways
– SESANS: Spin Echo Small Angle Neutron Scattering (bulk samples)
– SERGIS: Spin Echo Resolved Grazing Incidence Scattering (surface structure)

• Each allows large distance scales to be measured without 
excessive neutron beam collimation
– Resolution is also independent of sample size

• SESAME is good for strong scattering because it incorporates 
multiple scattering naturally
– Could be used for weak scattering if we can develop “dark-field SESANS”

• SESAME measures correlations in real space and provides 
different information from conventional scattering



Expression for Final Neutron Polarization
• Final neutron polarization, P, is given by the average of cos(Ψtot) over all 

neutrons scattered. When we work through the math for SESANS we find:

• ζ is, to leading order, equal to the separation of rays (Z) in an earlier slide 
and is called the spin echo length. It is the distance probed in the sample.

• The expression for P/P0 involves the single-scattering cross section and is 
correct even in cases of strong multiple scattering

• ζ is only weakly dependent on beam collimation. For φ0 = 32°, and
∆φ = ±0.5°, dζ/ζ ~ ±2.5%
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What does SESANS measure?
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Relationship Between SANS and SESANS
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Sometimes measuring correlations in real space has advantages



SANS: A Product of Structural Information

• The measured SANS 
intensity, I(Q), is the 
product of:
P(Q) – the particle form factor
S(Q) – the structure factor

• The damping of the particle form factor at large Q obscures 
high Q structural information i.e. information about short 
range correlations

• In principle, S(Q) at large Q can be found if P(Q) is 
measured on a dilute sample. But noise is a problem.

I(Q) ~ P(Q)S(Q)

Hard spheres



SANS I(Q) of Different Interacting Colloidal Systems

Likos et al. PRE 58 6229 1998Liu et al. PRL 95 118102 2005 Chen et al. Macromolecules 40 5887 2007

Huang et al. APL 93 161904 2008

•Very different systems often show a 
broad peak in SANS.
•The interpretation is always that there is 
some sort of structure with a length scale 
of 1/Qpeak.
•But we don’t know what sort of 
structure it might be.

Viewgraph from Wei Ren Chen



SESANS: Superposition of Structural Information

Li et al., J. Chem. Phys. 132 174509 2010

• For hard spheres, G(z) is the SUM of three terms:
• an intraparticle term
• an excluded volume term (i.e. the particles cannot overlap)
• a correlation term 



Attractive System

As the attractive part of the potential gets deeper, there is more 
chance of close contact so the dip gets less deep

Viewgraph from Wei Ren Chen



Monodisperse PMMA Spheres
• DLS showed PMMA spheres in dodecane to be well described by Percus-

Yevick hard-sphere model at low concentrations
• SESANS confirms this for high concentrations of 300 nm diameter spheres
• SESANS also shows the very weak effect of adding 1% PS  to a 30% 

suspension of PMMA spheres – in the opposite direction to expected!
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The difference is less clear in Q space

• The difference between PMMA and PMMA + 1% PS is 
much less clear in Q space as shown above

• It would be hard to look at I(Q) and know that the principal 
effect of adding PS is to decrease short range correlations
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Available Instruments

 At LENS & at ASTERIX 
 Electromagnetic Wollaston Prisms
 Max field ~ 300 Gauss; φ = 32°; ∆φ ~ ±0.5°
 Time of flight; SESANS and SERGIS
 ζmax ~  5 µm  (at λ = 1 nm)

 At Delft
 Permalloy foil flippers in iron core electromagnets
 Max field is several kG; φ = 5.5°; ∆φ < ±0.1°
 Fixed wavelength λ = 0.21 nm : ζmax ~  20 µm 
 SESANS only

 OFFSPEC at ISIS
 Adiabatic RF flippers (no material in beam)
 Max field ~ 2 kG; φ > 60° and ; ∆φ ~ 0.1°
 Time of flight; mainly SERGIS but some SESANS
 ζmax ~  15 µm (at λ = 1 nm)



• For closed prisms, the field must 
be uniform – verified by FE calcs

• Large Z => large B.L => large Larmor phases
– Integrated Larmor phase (i.e. path integral of magnetic field) has to be 

the same for all “equivalent” neutrons: a small percentage error yields a 
large absolute error in Z at large B.L

• The interface between fields (hypotenuse) must be flat
– Wires have to be positioned to within 0.1 mm to avoid aberrations in 

BL (different values for equivalent neutrons)

Design Criteria for Triangular Prisms
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Key Difference Between Light and Neutrons
• It is easy to embed optically birefringent prisms in a non-birefringent medium

– Harder for neutrons: need either constant B or B = 0

• Our approach has been to use guides fields and exploit symmetry to cancel 
aberrations in Larmor phase
– This is also used at Delft and ISIS but with different architectures

-20 -10 10 20

-4

-2

2

4

A
AB

B

Windings with gaps Water-cooled, gapped
Wollaston prisms

Difference between field of 
Gapped and Ungapped
Wollaston Prisms along

Central path



• Exploit symmetry to cancel aberrations in B.L
• Place “equivalent” field elements symmetrically about each pi 

flipper so that local cancellation is maximized
– Guide fields designed like our flippers 

decrease aberrations wrt no guides
– Changing the guide-field design can reduce the 

aberrations  at 2θ = 0 even further
– Contribution of gaps to spin-echo-length 

resolution is negligible compared to resolution
obtained with closed prisms

Cancelling Field-Integral Aberrations

Upper plot shows field modulus. Lower plot is difference between field 
modulus in Gauss on axis and a trajectory with y = 0, z = -1 cm, φ = 0, ψ = 0.3°. 

Grey integral is slightly +ve, red is slightly –ve: sum is very slightly +ve. Sum 
on right side is very slightly –ve. Near cancellation around a pi flipper, 

between adjacent pi’s & across central pi. Cancellation is exact if φ = ψ = 0. 
Note the 50 fold difference in vertical scale of the two plots.
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qy = (2π/λ) sinϕ

SERGIS: A Method for Studying GISANS

αf    Resolve with PSD

ϕ Resolve with Spin Echo

tight collimation

coarse collimation

Note that scattering at a particular value of q is spread over larger angles αf than φ



SERGIS Measurements of a Diffraction Grating

• First, let’s look at something we understand (or do we?).
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What should we expect?
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•P/P0 is the FT of S(Q)
•Within DWBA, S(Q) ~ FT of height-
height correlation function
•So, P/P0 should look like the 
height auto-correlation function?



Exact Dynamical Theory Calculation by Rana Ashkar

• Expand wavefunction in terms of Bloch waves
• Solve boundary conditions at interfaces between 

air, modulated layer and substrate

• Find:
where g = 2π/d, m is the order of Bragg 
reflection from the grating and the 
coefficients pm are found from the calculation

• The calculation is stable to any Bragg order and 
easily extended to other grating shapes
– Mathematica code
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Comparison of  Theory and Experiment

 Spin-echo length varies as a function of the current in the triangular solenoids:

 P/P0 peaks at integer multiples of the grating period, as expected

 Numerical calculations are very sensitive to beam divergence (in this case FWHM = 0.4 ˚)

Data from a Fixed-Wavelength Source (NCNR)
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Data from a Pulsed Source (LANSCE)

 Spin-echo length is wavelength dependent:

 Current in triangular solenoids is kept constant 

 Analytical calculations ( with all variables set to their experimentally observed  

values) and experimental data are again in good agreement
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1. Number of allowed states in the theory 
is consistent with the Ewald 

construction

2.  Theory confirms the turn on points of 
the allowed reflected beams mℜ
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5. Theory predicts the band structure of neutrons 
in the 1D periodic potential.

6.   Theory explains the behavior of the neutron 
wavefunction in the vicinity of the grating.
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Sensitivity to the scattering geometry

d = 556 nm, t = 110 nm, f = 0.5
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d = 556 nm, t = 140 nm, f = 0.5

φ = 0

100 200 300 400 500

0.5

0.5

1.0 θ = 0.15

0

P
P

Spin echo length (nm)

100 200 300 400 500
0.2

0.2

0.4

0.6

0.8

1.0

Spin echo length (nm)

0

P
P

θ = 0.18

θ
x

z

grating



The result appears to be very sensitive to groove depth
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The POA (blue) Works as well as the DT (red) 
for Transmission through a Grating

This is not unexpected. The Phase Object Approx was originally used 
for TEM. Also, in transmission the phase of the neutron wavefunction 

does not vary very much over the sample: it does in reflection.

d = 11.5 µm
h = 46.1 µm



a) scattering geometry. The incident 
beam (I) impinges on the sample 

surface at a shallow angle αi; 
transmitted (T), specular (S) and 

diffuse (Y) intensities are 
simultaneously recorded by PSD.

b) Image taken by 2-dimensional PSD 
during real experiment. The size of the 
incoming beam at the sample position 

was 30×2 mm2.

What Happens for a “Rough” Sample in Reflection?

Pictures from Vorobiev et al



The Useful Signal

(a) Incident angle less than critical angle;  (b) Incident angle ~ 3 x critical

• Grey background (S + T) is fully polarized (P0)
• Black area is diffuse scattering due to dewetted polymer
• P/P0 over ROI is the weighted sum of the polarizations of black + grey
• Condition (b) is better because we want to find P/P0 for black area

Pictures from Vorobiev et al



An Example: Dewetted Polymers on Silicon
(Vorobiev et al: to be published)

• Three samples: 
(i) homo-polymer (d-PS); 
(ii) blend (d-PS + PpMS); 
(iii) symmetric BCP P(S-b-PMS)

a) AFM of sample (ii)
b) Autocorrelation function of (a)
c) AFM of (iii)
d) Autocorrelation function of (c) 



SERGIS Results on Dewetted Polymers

• Results for BCP show structure
that is not present for the blend

• A model with lamellae oriented
perpendicular to the surface (a)
explains the data (c)

Polymer blend: SERGIS experiments plus 
model (red) and ACF (blue) from AFM



Can we use SERGIS to Study Surface Structure?

• Yes –if we can see Yoneda scattering
– This means that there has to be SLD contrast on the several micron length 

scale in addition to the length scales of interest (50 nm – 500 nm)
– The gain in measurement time is roughly the ratio of the collimations needed 

for traditional and SERGIS measurements
– SERGIS yields a real space correlation function rather than S(Q)

• The problem for GISANS is that diffuse scattering is spread 
out in the specular plane making weak scattering hard to 
separate from background
– A possible solution is to measure the scattering in the transmitted beam 

when the incident angle is well above critical – but this requires that we find 
a way to eliminate the unscattered beam – dark-field SESAME

• For now, the proven uses of SESAME are:
– SESANS on strongly scattering samples
– SERGIS on periodic samples with in-plane SLD contrast which give Yoneda 

peaks.



END
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